Abstract
BackgroundEndovascular treatment of intracranial vascular diseases, such as aneurysms, is often challenged by unfavorable vascular anatomy. The Bendit Steerable Microcatheter (Bendit Technologies, Tel Aviv, Israel) has bending and torqueing capabilities designed to improve navigation and stability during device delivery, with or without a guidewire. We describe our preclinical experience with the Bendit 17 and Bendit 21 microcatheters in a rabbit aneurysm model.MethodsBifurcation and side wall aneurysms were created surgically in six New Zealand rabbits. We attempted to navigate Bendit devices through the vasculature and enter the aneurysms without a guidewire. Various positions within the aneurysm were selectively explored. Angiographic imaging was used to visualize catheterization, navigation, vascular manipulations, and placement of coils, stents, and intrasaccular devices.ResultsWe successfully navigated the Bendit microcatheters to all aneurysms without a guidewire. We successfully recanalized a nearly occluded carotid artery and navigated the Bendit through a braided stent. In contrast, we were unable to navigate a comparator device with a guidewire as effectively as the Bendit. Coils were introduced at different locations within the aneurysm and could be pushed, pulled, and repositioned with the Bendit tip. Finally, we used the Bendit to deliver intrasaccular devices designed for terminal aneurysms to treat side wall aneurysms.ConclusionsBendit’s bending and torqueing abilities, combined with its stability in the bent position, enable quick navigation and optimal deployment of devices. Clinical studies are necessary to determine whether these navigation advantages lead to more efficient treatment of intracranial and peripheral aneurysms.
Subject
Neurology (clinical),General Medicine,Surgery
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献