Predicting the risks of kidney failure and death in adults with moderate to severe chronic kidney disease: multinational, longitudinal, population based, cohort study

Author:

Liu Ping,Sawhney Simon,Heide-Jørgensen Uffe,Quinn Robert Ross,Jensen Simon Kok,Mclean Andrew,Christiansen Christian Fynbo,Gerds Thomas Alexander,Ravani PietroORCID

Abstract

Abstract Objective To train and test a super learner strategy for risk prediction of kidney failure and mortality in people with incident moderate to severe chronic kidney disease (stage G3b to G4). Design Multinational, longitudinal, population based, cohort study. Settings Linked population health data from Canada (training and temporal testing), and Denmark and Scotland (geographical testing). Participants People with newly recorded chronic kidney disease at stage G3b-G4, estimated glomerular filtration rate (eGFR) 15-44 mL/min/1.73 m 2 . Modelling The super learner algorithm selected the best performing regression models or machine learning algorithms (learners) based on their ability to predict kidney failure and mortality with minimised cross-validated prediction error (Brier score, the lower the better). Prespecified learners included age, sex, eGFR, albuminuria, with or without diabetes, and cardiovascular disease. The index of prediction accuracy, a measure of calibration and discrimination calculated from the Brier score (the higher the better) was used to compare KDpredict with the benchmark, kidney failure risk equation, which does not account for the competing risk of death, and to evaluate the performance of KDpredict mortality models. Results 67 942 Canadians, 17 528 Danish, and 7740 Scottish residents with chronic kidney disease at stage G3b to G4 were included (median age 77-80 years; median eGFR 39 mL/min/1.73 m 2 ). Median follow-up times were five to six years in all cohorts. Rates were 0.8-1.1 per 100 person years for kidney failure and 10-12 per 100 person years for death. KDpredict was more accurate than kidney failure risk equation in prediction of kidney failure risk: five year index of prediction accuracy 27.8% (95% confidence interval 25.2% to 30.6%) versus 18.1% (15.7% to 20.4%) in Denmark and 30.5% (27.8% to 33.5%) versus 14.2% (12.0% to 16.5%) in Scotland. Predictions from kidney failure risk equation and KDpredict differed substantially, potentially leading to diverging treatment decisions. An 80-year-old man with an eGFR of 30 mL/min/1.73 m 2 and an albumin-to-creatinine ratio of 100 mg/g (11 mg/mmol) would receive a five year kidney failure risk prediction of 10% from kidney failure risk equation (above the current nephrology referral threshold of 5%). The same man would receive five year risk predictions of 2% for kidney failure and 57% for mortality from KDpredict. Individual risk predictions from KDpredict with four or six variables were accurate for both outcomes. The KDpredict models retrained using older data provided accurate predictions when tested in temporally distinct, more recent data. Conclusions KDpredict could be incorporated into electronic medical records or accessed online to accurately predict the risks of kidney failure and death in people with moderate to severe CKD. The KDpredict learning strategy is designed to be adapted to local needs and regularly revised over time to account for changes in the underlying health system and care processes.

Funder

Institute of Nutrition, Metabolism and Diabetes

Canadian Institutes of Health Research

Kidney Foundation of Canada

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3