Effect modifiers of lung function and daily air pollutant variability in a panel of schoolchildren

Author:

Mentz Graciela,Robins Thomas G,Batterman Stuart,Naidoo Rajen NORCID

Abstract

BackgroundAcute pollutant-related lung function changes among children varies across pollutants and lag periods. We examined whether short-term air pollutant fluctuations were related to daily lung function among a panel of children and whether these effects are modified by airway hyperresponsiveness, location and asthma severity.MethodsStudents from randomly selected grade 4 classrooms at seven primary schools in Durban, participated, together with asthmatic children from grades 3–6 (n=423). The schools were from high pollutant exposed communities (south) and compared with schools from communities with lower levels of pollution (north), with similar socioeconomic profiles. Interviews, spirometry and methacholine challenge testing were conducted. Bihourly lung function measurements were performed over a 3-week period in four phases. During all schooldays, students blew into their personal digital monitors every 1.5–2 hours. Nitrogen dioxide (NO2), nitrogen oxide (NO), sulphur dioxide and particulate matter (<10 μm diameter) (PM10) were measured at each school. Generalised estimating equations assessed lag effects, using single-pollutant (single or distributed lags) models.ResultsFEV1 declines ranged from 13 to 18 mL per unit increase in IQR for NO and 14–23 mL for NO2. Among the 5-day average models, a 20 mL and 30 mL greater drop in FEV1 per IQR for NO2 and NO, respectively, among those with airway hyperresponsiveness compared with those without. Effects were seen among those with normal airways.ConclusionsThis first panel study in sub-Saharan Africa, showed significant declines in lung function, in response to NO and NO2 with effects modified by airway hyperresponsiveness or persistent asthma.

Funder

Fogarty International Center

eThekwini Municipality

South African Medical Research Council

Publisher

BMJ

Subject

Pulmonary and Respiratory Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3