Neuroretinal atrophy following resolution of macular oedema in retinal vein occlusion

Author:

Podkowinski Dominika,Philip Ana-Maria,Vogl Wolf-DieterORCID,Gamper Jutta,Bogunovic Hrvoje,Gerendas Bianca S,Haj Najeeb Bilal,Waldstein Sebastian M,Schmidt-Erfurth Ursula

Abstract

Background/aimsTo characterise neuroretinal atrophy in retinal vein occlusion (RVO).MethodsWe included patients with central/branch RVO (CRVO=196, BRVO=107) who received ranibizumab according to a standardised protocol for 6 months. Retinal atrophy was defined as the presence of an area of retinal thickness (RT) <260 µm outside the foveal centre. Moreover, the thickness of three distinct retinal layer compartments was computed as follows: (1) retinal nerve fibre layer to ganglion cell layer, (2) inner plexiform layer (IPL) to outer nuclear layer (ONL) and (3) inner segment/outer segment junction to retinal pigment epithelium. To characterise atrophy further, we assessed perfusion status on fluorescein angiography and best-corrected visual acuity (BCVA), and compared these between eyes with/without atrophy.Results23 patients with CRVO and 11 patients with BRVO demonstrated retinal atrophy, presenting as sharply demarcated retinal thinning confined to a macular quadrant. The mean RT in the atrophic quadrant at month 6 was 249±26 µm (CRVO) and 244±29 µm (BRVO). Individual layer analysis revealed pronounced thinning in the IPL to ONL compartment. Change in BCVA at 6 months was similar between the groups (BRVO, +15 vs +18 letters; CRVO, +14 vs +18 letters).ConclusionsIn this exploratory analysis, we describe the characteristics of neuroretinal atrophy in RVO eyes with resolved macular oedema after ranibizumab therapy. Our analysis shows significant, predominantly retinal thinning in the IPL to ONL compartment in focal macular areas in 11% of patients with RVO. Eyes with retinal atrophy did not show poorer BCVA outcomes.

Funder

Austrian Federal Ministry of Economy, Family and Youth, National Foundation for Research, Technology and Development.

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3