Using an open-source tablet perimeter (Eyecatcher) as a rapid triage measure for glaucoma clinic waiting areas

Author:

Jones Pete RORCID,Lindfield DanORCID,Crabb David PORCID

Abstract

Background Glaucoma services are under unprecedented strain. The UK Healthcare Safety Investigation Branch recently called for new ways to identify glaucoma patients most at risk of developing sight loss, and of filtering-out false-positive referrals. Here, we evaluate the feasibility of one such technology, Eyecatcher: a free, tablet-based ‘triage’ perimeter, designed to be used unsupervised in clinic waiting areas. Eyecatcher does not require a button or headrest: patients are simply required to look at fixed-luminance dots as they appear. Methods Seventy-seven people were tested twice using Eyecatcher (one eye only) while waiting for a routine appointment in a UK glaucoma clinic. The sample included individuals with an established diagnosis of glaucoma, and false-positive new referrals (no visual field or optic nerve abnormalities). No attempts were made to control the testing environment. Patients wore their own glasses and received minimal task instruction. Results Eyecatcher was fast (median: 2.5 min), produced results in good agreement with standard automated perimetry (SAP), and was rated as more enjoyable, less tiring and easier to perform than SAP (all p<0.001). It exhibited good separation (area under receiver operating characteristic=0.97) between eyes with advanced field loss (mean deviation (MD) < −6 dB) and those within normal limits (MD > −2 dB). And it was able to flag two thirds of false-positive referrals as functionally normal. However, eight people (10%) failed to complete the test twice, and reasons for this limitation are discussed. Conclusions Tablet-based eye-movement perimetry could potentially provide a pragmatic way of triaging busy glaucoma clinics (ie, flagging high-risk patients and possible false-positive referrals).

Funder

Fight for Sight UK

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3