Abstract
IntroductionEarly screening for diabetic retinopathy (DR) with an efficient and scalable method is highly needed to reduce blindness, due to the growing epidemic of diabetes. The aim of the study was to validate an artificial intelligence-enabled DR screening and to investigate the prevalence of DR in adult patients with diabetes in China.Research design and methodsThe study was prospectively conducted at 155 diabetes centers in China. A non-mydriatic, macula-centered fundus photograph per eye was collected and graded through a deep learning (DL)-based, five-stage DR classification. Images from a randomly selected one-third of participants were used for the DL algorithm validation.ResultsIn total, 47 269 patients (mean (SD) age, 54.29 (11.60) years) were enrolled. 15 805 randomly selected participants were reviewed by a panel of specialists for DL algorithm validation. The DR grading algorithms had a 83.3% (95% CI: 81.9% to 84.6%) sensitivity and a 92.5% (95% CI: 92.1% to 92.9%) specificity to detect referable DR. The five-stage DR classification performance (concordance: 83.0%) is comparable to the interobserver variability of specialists (concordance: 84.3%). The estimated prevalence in patients with diabetes detected by DL algorithm for any DR, referable DR and vision-threatening DR were 28.8% (95% CI: 28.4% to 29.3%), 24.4% (95% CI: 24.0% to 24.8%) and 10.8% (95% CI: 10.5% to 11.1%), respectively. The prevalence was higher in female, elderly, longer diabetes duration and higher glycated hemoglobin groups.ConclusionThis study performed, a nationwide, multicenter, DL-based DR screening and the results indicated the importance and feasibility of DR screening in clinical practice with this system deployed at diabetes centers.Trial registration numberNCT04240652.
Funder
National Key R&D Program of China
the Program for Shanghai Outstanding Medical Academic Leader
the Youth Program of Shanghai Municipal Health and Family Planning Commission
National Natural Science Foundation of China
Chinese Academy of Engineering
the Yang Fan Project of Shanghai Science and Technology Committee
Subject
Endocrinology, Diabetes and Metabolism
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献