Biallelic frameshift variants inPHLDB1cause mild-type osteogenesis imperfecta with regressive spondylometaphyseal changes

Author:

Tuysuz BeyhanORCID,Uludag Alkaya Dilek,Geyik Filiz,Alaylıoğlu Merve,Kasap Busra,Kurugoğlu Sebuh,Akman Yunus Emre,Vural Mehmet,Bilguvar Kaya

Abstract

BackgroundOsteogenesis imperfecta (OI) is a heterogeneous group of inherited disorders characterised by susceptibility to fractures, primarily due to defects in type 1 collagen. The aim of this study is to present a novel OI phenotype and its causative candidate gene.MethodsWhole-exome sequencing and clinical evaluation were performed in five patients from two unrelated families.PHLDB1mRNA expression in blood and fibroblasts was investigated by real-time PCR, and western blot analysis was further performed on skin fibroblasts.ResultsThe common findings among the five affected children were recurrent fractures and/or osteopaenia, platyspondyly, short and bowed long bones, and widened metaphyses. Metaphyseal and vertebral changes regressed after early childhood, and no fractures occurred under bisphosphonate treatment. We identified biallelic NM_001144758.3:c.2392dup and NM_001144758.3:c.2690_2693del pathogenic variants inPHLDB1in the affected patients, respectively, in the families; parents were heterozygous for these variants.PHLDB1encodes pleckstrin homology-like domain family B member-1 (PHLDB1) protein, which has a role in insulin-dependent Akt phosphorylation. Compared with controls, a decrease in the expression levels ofPHLDB1in the blood and skin fibroblast samples was detected. Western blot analysis of cultured fibroblasts further confirmed the loss of PHLDB1.ConclusionTwo biallelic frameshift variants in the candidate genePHLDB1were identified in independent families with a novel, mild-type, autosomal recessive OI. The demonstration of decreasedPHLDB1mRNA expression levels in blood and fibroblast samples supports the hypothesis thatPHLDB1pathogenic variants are causative for the observed phenotype.

Funder

Turkish Pediatric association

the Scientific and Technological Research Council of Turkey

Publisher

BMJ

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3