Novel autoantibodies help diagnose anti-SSA antibody negative Sjögren disease and predict abnormal labial salivary gland pathology

Author:

Parker Maxwell,Zheng Zihao,Lasarev Michael R,Larsen Michele C,Vande Loo Addie,Alexandridis Roxana A,Newton Michael AORCID,Shelef Miriam AORCID,McCoy Sara SORCID

Abstract

ObjectivesSjögren disease (SjD) diagnosis often requires either positive anti-SSA antibodies or a labial salivary gland biopsy with a positive focus score (FS). One-third of patients with SjD lack anti-SSA antibodies (SSA−), requiring a positive FS for diagnosis. Our objective was to identify novel autoantibodies to diagnose ‘seronegative’ SjD.MethodsIgG binding to a high-density whole human peptidome array was quantified using sera from SSA− SjD cases and matched non-autoimmune controls. We identified the highest bound peptides using empirical Bayesian statistical filters, which we confirmed in an independent cohort comprising SSA− SjD (n=76), sicca-controls without autoimmunity (n=75) and autoimmune-feature controls (SjD features but not meeting SjD criteria; n=41). In this external validation, we used non-parametric methods for binding abundance and controlled false discovery rate in group comparisons. For predictive modelling, we used logistic regression, model selection methods and cross-validation to identify clinical and peptide variables that predict SSA− SjD and FS positivity.ResultsIgG against a peptide from D-aminoacyl-tRNA deacylase (DTD2) bound more in SSA− SjD than sicca-controls (p=0.004) and combined controls (sicca-controls and autoimmune-feature controls combined; p=0.003). IgG against peptides from retroelement silencing factor-1 and DTD2 were bound more in FS-positive than FS-negative participants (p=0.010; p=0.012). A predictive model incorporating clinical variables showed good discrimination between SjD versus control (area under the curve (AUC) 74%) and between FS-positive versus FS-negative (AUC 72%).ConclusionWe present novel autoantibodies in SSA− SjD that have good predictive value for SSA− SjD and FS positivity.

Funder

Wisconsin Alumni Research Foundation

Sjogren's Foundation

NCATS

U.S. Army

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3