Analysis of ‘One in a Million’ primary care consultation conversations using natural language processing

Author:

Pyne YvetteORCID,Wong Yik Ming,Fang Haishuo,Simpson Edwin

Abstract

BackgroundModern patient electronic health records form a core part of primary care; they contain both clinical codes and free text entered by the clinician. Natural language processing (NLP) could be employed to generate these records through ‘listening’ to a consultation conversation.ObjectivesThis study develops and assesses several text classifiers for identifying clinical codes for primary care consultations based on the doctor–patient conversation. We evaluate the possibility of training classifiers using medical code descriptions, and the benefits of processing transcribed speech from patients as well as doctors. The study also highlights steps for improving future classifiers.MethodsUsing verbatim transcripts of 239 primary care consultation conversations (the ‘One in a Million’ dataset) and novel additional datasets for distant supervision, we trained NLP classifiers (naïve Bayes, support vector machine, nearest centroid, a conventional BERT classifier and few-shot BERT approaches) to identify the International Classification of Primary Care-2 clinical codes associated with each consultation.ResultsOf all models tested, a fine-tuned BERT classifier was the best performer. Distant supervision improved the model’s performance (F1 score over 16 classes) from 0.45 with conventional supervision with 191 labelled transcripts to 0.51. Incorporating patients’ speech in addition to clinician’s speech increased the BERT classifier’s performance from 0.45 to 0.55 F1 (p=0.01, paired bootstrap test).ConclusionsOur findings demonstrate that NLP classifiers can be trained to identify clinical area(s) being discussed in a primary care consultation from audio transcriptions; this could represent an important step towards a smart digital assistant in the consultation room.

Funder

National Institute for Health Research

Wellcome Trust

Publisher

BMJ

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3