Creating realistic anterior segment optical coherence tomography images using generative adversarial networks

Author:

Assaf Jad FORCID,Abou Mrad Anthony,Reinstein Dan ZORCID,Amescua Guillermo,Zakka Cyril,Archer Timothy J,Yammine Jeffrey,Lamah Elsa,Haykal Michèle,Awwad Shady TORCID

Abstract

AimsTo develop a generative adversarial network (GAN) capable of generating realistic high-resolution anterior segment optical coherence tomography (AS-OCT) images.MethodsThis study included 142 628 AS-OCT B-scans from the American University of Beirut Medical Center. The Style and WAvelet based GAN architecture was trained to generate realistic AS-OCT images and was evaluated through the Fréchet Inception Distance (FID) Score and a blinded assessment by three refractive surgeons who were asked to distinguish between real and generated images. To assess the suitability of the generated images for machine learning tasks, a convolutional neural network (CNN) was trained using a dataset of real and generated images over a classification task. The generated AS-OCT images were then upsampled using an enhanced super-resolution GAN (ESRGAN) to achieve high resolution.ResultsThe generated images exhibited visual and quantitative similarity to real AS-OCT images. Quantitative similarity assessed using FID scored an average of 6.32. Surgeons scored 51.7% in identifying real versus generated images which was not significantly better than chance (p value >0.3). The CNN accuracy improved from 78% to 100% when synthetic images were added to the dataset. The ESRGAN upsampled images were objectively more realistic and accurate compared with traditional upsampling techniques by scoring a lower Learned Perceptual Image Patch Similarity of 0.0905 compared with 0.4244 of bicubic interpolation.ConclusionsThis study successfully developed and leveraged GANs capable of generating high-definition synthetic AS-OCT images that are realistic and suitable for machine learning and image analysis tasks.

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3