Development and external validation of prognostic models for COVID-19 to support risk stratification in secondary care

Author:

Adderley Nicola JORCID,Taverner Thomas,Price Malcolm James,Sainsbury Christopher,Greenwood David,Chandan Joht SinghORCID,Takwoingi Yemisi,Haniffa Rashan,Hosier Isaac,Welch Carly,Parekh DhruvORCID,Gallier Suzy,Gokhale Krishna,Denniston Alastair K,Sapey ElizabethORCID,Nirantharakumar Krishnarajah

Abstract

ObjectivesExisting UK prognostic models for patients admitted to the hospital with COVID-19 are limited by reliance on comorbidities, which are under-recorded in secondary care, and lack of imaging data among the candidate predictors. Our aims were to develop and externally validate novel prognostic models for adverse outcomes (death and intensive therapy unit (ITU) admission) in UK secondary care and externally validate the existing 4C score.DesignCandidate predictors included demographic variables, symptoms, physiological measures, imaging and laboratory tests. Final models used logistic regression with stepwise selection.SettingModel development was performed in data from University Hospitals Birmingham (UHB). External validation was performed in the CovidCollab dataset.ParticipantsPatients with COVID-19 admitted to UHB January–August 2020 were included.Main outcome measuresDeath and ITU admission within 28 days of admission.Results1040 patients with COVID-19 were included in the derivation cohort; 288 (28%) died and 183 (18%) were admitted to ITU within 28 days of admission. Area under the receiver operating characteristic curve (AUROC) for mortality was 0.791 (95% CI 0.761 to 0.822) in UHB and 0.767 (95% CI 0.754 to 0.780) in CovidCollab; AUROC for ITU admission was 0.906 (95% CI 0.883 to 0.929) in UHB and 0.811 (95% CI 0.795 to 0.828) in CovidCollab. Models showed good calibration. Addition of comorbidities to candidate predictors did not improve model performance. AUROC for the International Severe Acute Respiratory and Emerging Infection Consortium 4C score in the UHB dataset was 0.753 (95% CI 0.720 to 0.785).ConclusionsThe novel prognostic models showed good discrimination and calibration in derivation and external validation datasets, and performed at least as well as the existing 4C score using only routinely collected patient information. The models can be integrated into electronic medical records systems to calculate each individual patient’s probability of death or ITU admission at the time of hospital admission. Implementation of the models and clinical utility should be evaluated.

Funder

Medical Research Council and UKRI

Publisher

BMJ

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3