Developing an AI-assisted digital auscultation tool for automatic assessment of the severity of mitral regurgitation: protocol for a cross-sectional, non-interventional study

Author:

Zhang Li,Cheng Zhenfeng,Xu Dongyang,Wang Zhi,Cai Shengsheng,Hu Nan,Ma Jianming,Mei XueqinORCID

Abstract

IntroductionMitral regurgitation (MR) is the most common valvular heart disorder, with a morbidity rate of 2.5%. While echocardiography is commonly used in assessing MR, it has many limitations, especially for large-scale MR screening. Cardiac auscultation with electronic stethoscope and artificial intelligence (AI) can be a fast and economical modality for assessing MR severity. Our objectives are (1) to establish a deep neural network (DNN)-based cardiac auscultation method for assessing the severity of MR; and (2) to quantitatively measure the performance of the developed AI-based MR assessment method by virtual clinical trial.Methods and analysisIn a cross-sectional design, phonocardiogram will be recorded at the mitral valve auscultation area of outpatients. The enrolled patients will be checked by echocardiography to confirm the diagnosis of MR or no MR. Echocardiographic parameters will be used as gold standard to assess the severity of MR, classified into four levels: none, mild, moderate and severe. The study consists of two stages. First, an MR-related cardiac sound database will be created on which a DNN-based MR severity classifier will be trained. The automatic MR severity classifier will be integrated with the Smartho-D2 electronic stethoscope. Second, the performance of the developed smart device will be assessed in an independent clinical validation data set. Sensitivity, specificity, precision, accuracy and F1 score of the developed smart MR assessment device will be evaluated. Agreement on the performance of the smart device between cardiologist users and patient users will be inspected. The interpretability of the developed model will also be studied with statistical comparisons of occlusion map-guided variables among the four severity groups.Ethics and disseminationThe study protocol was approved by the Medical Ethics Committee of Huzhou Central Hospital, China (registration number: 202302009-01). Informed consent is required from all participants. Dissemination will be through conference presentations and peer-reviewed journals.Trial registration numberChiCTR2300069496.

Funder

Huzhou Science and Technology Project

Cardiovascular Discipline Group Funds of Huzhou

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3