Development and validation of a prehospital-stage prediction tool for traumatic brain injury: a multicentre retrospective cohort study in Korea

Author:

Choi Yeongho,Park Jeong HoORCID,Hong Ki Jeong,Ro Young SunORCID,Song Kyoung Jun,Shin Sang Do

Abstract

ObjectivesPredicting diagnosis and prognosis of traumatic brain injury (TBI) at the prehospital stage is challenging; however, using comprehensive prehospital information and machine learning may improve the performance of the predictive model. We developed and tested predictive models for TBI that use machine learning algorithms using information that can be obtained in the prehospital stage.DesignThis was a multicentre retrospective study.Setting and participantsThis study was conducted at three tertiary academic emergency departments (EDs) located in an urban area of South Korea. The data from adult patients with severe trauma who were assessed by emergency medical service providers and transported to three participating hospitals between 2014 to 2018 were analysed.ResultsWe developed and tested five machine learning algorithms—logistic regression analyses, extreme gradient boosting, support vector machine, random forest and elastic net (EN)—to predict TBI, TBI with intracranial haemorrhage or injury (TBI-I), TBI with ED or admission result of admission or transferred (TBI with non-discharge (TBI-ND)) and TBI with ED or admission result of death (TBI-D). A total of 1169 patients were included in the final analysis, and the proportions of TBI, TBI-I, TBI-ND and TBI-D were 24.0%, 21.5%, 21.3% and 3.7%, respectively. The EN model yielded an area under receiver–operator curve of 0.799 for TBI, 0.844 for TBI-I, 0.811 for TBI-ND and 0.871 for TBI-D. The EN model also yielded the highest specificity and significant reclassification improvement. Variables related to loss of consciousness, Glasgow Coma Scale and light reflex were the three most important variables to predict all outcomes.ConclusionOur results inform the diagnosis and prognosis of TBI. Machine learning models resulted in significant performance improvement over that with logistic regression analyses, and the best performing model was EN.

Funder

Seoul National University Hospital

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3