Conditionally positive: a qualitative study of public perceptions about using health data for artificial intelligence research

Author:

McCradden Melissa D,Sarker Tasmie,Paprica P AlisonORCID

Abstract

ObjectivesGiven widespread interest in applying artificial intelligence (AI) to health data to improve patient care and health system efficiency, there is a need to understand the perspectives of the general public regarding the use of health data in AI research.DesignA qualitative study involving six focus groups with members of the public. Participants discussed their views about AI in general, then were asked to share their thoughts about three realistic health AI research scenarios. Data were analysed using qualitative description thematic analysis.SettingsTwo cities in Ontario, Canada: Sudbury (400 km north of Toronto) and Mississauga (part of the Greater Toronto Area).ParticipantsForty-one purposively sampled members of the public (21M:20F, 25–65 years, median age 40).ResultsParticipants had low levels of prior knowledge of AI and mixed, mostly negative, perceptions of AI in general. Most endorsed using data for health AI research when there is strong potential for public benefit, providing that concerns about privacy, commercial motives and other risks were addressed. Inductive thematic analysis identified AI-specific hopes (eg, potential for faster and more accurate analyses, ability to use more data), fears (eg, loss of human touch, skill depreciation from over-reliance on machines) and conditions (eg, human verification of computer-aided decisions, transparency). There were mixed views about whether data subject consent is required for health AI research, with most participants wanting to know if, how and by whom their data were used. Though it was not an objective of the study, realistic health AI scenarios were found to have an educational effect.ConclusionsNotwithstanding concerns and limited knowledge about AI in general, most members of the general public in six focus groups in Ontario, Canada perceived benefits from health AI and conditionally supported the use of health data for AI research.

Funder

Vector Institute

Publisher

BMJ

Subject

General Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3