Discrimination capability of pretest probability of stable coronary artery disease: a systematic review and meta-analysis suggesting how to improve validation procedures

Author:

Mincarone PierpaoloORCID,Bodini Antonella,Tumolo Maria Rosaria,Vozzi Federico,Rocchiccioli Silvia,Pelosi Gualtiero,Caselli Chiara,Sabina Saverio,Leo Carlo GiacomoORCID

Abstract

ObjectiveExternally validated pretest probability models for risk stratification of subjects with chest pain and suspected stable coronary artery disease (CAD), determined through invasive coronary angiography or coronary CT angiography, are analysed to characterise the best validation procedures in terms of discriminatory ability, predictive variables and method completeness.DesignSystematic review and meta-analysis.Data sourcesGlobal Health (Ovid), Healthstar (Ovid) and MEDLINE (Ovid) searched on 22 April 2020.Eligibility criteriaWe included studies validating pretest models for the first-line assessment of patients with chest pain and suspected stable CAD. Reasons for exclusion: acute coronary syndrome, unstable chest pain, a history of myocardial infarction or previous revascularisation; models referring to diagnostic procedures different from the usual practices of the first-line assessment; univariable models; lack of quantitative discrimination capability.MethodsEligibility screening and review were performed independently by all the authors. Disagreements were resolved by consensus among all the authors. The quality assessment of studies conforms to the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). A random effects meta-analysis of area under the receiver operating characteristic curve (AUC) values for each validated model was performed.Results27 studies were included for a total of 15 models. Besides age, sex and symptom typicality, other risk factors are smoking, hypertension, diabetes mellitus and dyslipidaemia. Only one model considers genetic profile. AUC values range from 0.51 to 0.81. Significant heterogeneity (p<0.003) was found in all but two cases (p>0.12). Values of I2 >90% for most analyses and not significant meta-regression results undermined relevant interpretations. A detailed discussion of individual results was then carried out.ConclusionsWe recommend a clearer statement of endpoints, their consistent measurement both in the derivation and validation phases, more comprehensive validation analyses and the enhancement of threshold validations to assess the effects of pretest models on clinical management.PROSPERO registration numberCRD42019139388.

Funder

Horizon 2020 Framework Programme

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3