Predicting the use of antibiotics after initial symptomatic treatment of an uncomplicated urinary tract infection: analyses performed after a randomised controlled trial

Author:

Vik IngvildORCID,Mdala Ibrahimu,Bollestad Marianne,Cordoba Gloria CristinaORCID,Bjerrum Lars,Neumark Thomas,Damsgaard Eivind,Bærheim Anders,Grude Nils,Lindbaek Morten

Abstract

ObjectiveTo predict antibiotic use after initial treatment with ibuprofen using data from a randomised controlled trial comparing ibuprofen to pivmecillinam in the treatment of women with symptoms of an uncomplicated urinary tract infection (UTI).Setting16 sites in a primary care setting in Norway, Sweden and Denmark.ParticipantsData from 181 non-pregnant women aged 18–60 presenting with symptoms of uncomplicated UTI, initially treated with ibuprofen.MethodsUsing the least absolute shrinkage and selection operator logistic regression model, we conducted analyses to see if baseline information could help us predict which women could be treated with ibuprofen without risking treatment failure and which women should be recommended antibiotics.ResultsOf the 143 women included in the final analysis, 77 (53.8%) recovered without antibiotics and 66 (46.2 %) were subsequently prescribed antibiotics. In the unadjusted binary logistic regression, the number of days with symptoms before inclusion (<3 days) and feeling moderately unwell or worse (≥4 on a scale of 0–6) were significant predictors for subsequent antibiotic use. In the adjusted model, no predictors were significantly associated with subsequent antibiotic use. The area under the curve of the final model was 0.66 (95% CI: 0.57 to 0.74).ConclusionWe did not find any baseline information that significantly predicted the use of antibiotic treatment. Identifying women who need antibiotic treatment to manage their uncomplicated UTI is still challenging. Larger data sets are needed to develop models that are more accurate.Trial registration numberClinicalTrials.gov (NCT01849926).

Funder

Norges Forskningsråd

Publisher

BMJ

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3