Abstract
ObjectivesLinkage of electronic health records (EHRs) to Hospital Episode Statistics (HES)-Office for National Statistics (ONS) mortality data has provided compelling evidence for lower life expectancy in people with severe mental illness. However, linkage error may underestimate these estimates. Using a clinical sample (n=265 300) of individuals accessing mental health services, we examined potential biases introduced through missed matching and examined the impact on the association between clinical disorders and mortality.SettingThe South London and Maudsley NHS Foundation Trust (SLaM) is a secondary mental healthcare provider in London. A deidentified version of SLaM’s EHR was available via the Clinical Record Interactive Search system linked to HES-ONS mortality records.ParticipantsRecords from SLaM for patients active between January 2006 and December 2016.Outcome measuresTwo sources of death data were available for SLaM participants: accurate and contemporaneous date of death via local batch tracing (gold standard) and date of death via linked HES-ONS mortality data. The effect of linkage error on mortality estimates was evaluated by comparing sociodemographic and clinical risk factor analyses using gold standard death data against HES-ONS mortality records.ResultsOf the total sample, 93.74% were successfully matched to HES-ONS records. We found a number of statistically significant administrative, sociodemographic and clinical differences between matched and unmatched records. Of note, schizophrenia diagnosis showed a significant association with higher mortality using gold standard data (OR 1.08; 95% CI 1.01 to 1.15; p=0.02) but not in HES-ONS data (OR 1.05; 95% CI 0.98 to 1.13; p=0.16). Otherwise, little change was found in the strength of associated risk factors and mortality after accounting for missed matching bias.ConclusionsDespite significant clinical and sociodemographic differences between matched and unmatched records, changes in mortality estimates were minimal. However, researchers and policy analysts using HES-ONS linked resources should be aware that administrative linkage processes can introduce error.
Funder
Medical Research Council
National Institute for Health Research
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献