Big Data Reality Check (BDRC) for public health: to what extent the environmental health and health services research did meet the ‘V’ criteria for big data? A study protocol

Author:

Tang Pui PuiORCID,Tam I LamORCID,Jia YongliangORCID,Leung Siu-waiORCID

Abstract

IntroductionBig data technologies have been talked up in the fields of science and medicine. The V-criteria (volume, variety, velocity and veracity, etc) for defining big data have been well-known and even quoted in most research articles; however, big data research into public health is often misrepresented due to certain common misconceptions. Such misrepresentations and misconceptions would mislead study designs, research findings and healthcare decision-making. This study aims to identify the V-eligibility of big data studies and their technologies applied to environmental health and health services research that explicitly claim to be big data studies.Methods and analysisOur protocol follows Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P). Scoping review and/or systematic review will be conducted. The results will be reported using PRISMA for Scoping Reviews (PRISMA-ScR), or PRISMA 2020 and Synthesis Without Meta-analysis guideline. Web of Science, PubMed, Medline and ProQuest Central will be searched for the articles from the database inception to 2021. Two reviewers will independently select eligible studies and extract specified data. The numeric data will be analysed with R statistical software. The text data will be analysed with NVivo wherever applicable.Ethics and disseminationThis study will review the literature of big data research related to both environmental health and health services. Ethics approval is not required as all data are publicly available and involves confidential personal data. We will disseminate our findings in a peer-reviewed journal.PROSPERO registration numberCRD42021202306.

Funder

Zhengzhou University

Henan Institute of Medical and Pharmacological Sciences

Shenzhen Institute of Artificial Intelligence and Robotics for Society

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3