Visuospatial dysfunction predicts dementia-first phenoconversion in isolated REM sleep behaviour disorder

Author:

Wang JingORCID,Huang BeiORCID,Zhou Li,Tang Shi,Feng HongliangORCID,Chan Joey W Y,Chau Steven W H,Zhang Jihui,Li Shirley X,Mok Vincent,Wing Yun KwokORCID,Liu YapingORCID

Abstract

ObjectiveWhile isolated rapid eye movement sleep behaviour disorder (iRBD) is known as a prodrome of α-synucleinopathies, the prediction for its future phenoconversion to parkinsonism-first or dementia-first subtype remains a challenge. This study aimed to investigate whether visuospatial dysfunction predicts dementia-first phenoconversion in iRBD.MethodsPatients with iRBD and control subjects were enrolled in this prospective cohort study. Baseline neuropsychological assessment included the Unified Parkinson’s Disease Rating Scale part III, Montreal Cognitive Assessment (MoCA), Rey-Osterrieth complex figure (ROCF), Colour Trails test (CTT), Farnsworth-Munsell 100-hue test and Digit Span test. The anterior and posterior subscores of MoCA as well as their modified versions were explored. A composite score derived from ROCF and CTT was also explored. Regular follow-up was conducted to determine the phenoconversion status of iRBD patients.ResultsThe study included 175 iRBD patients and 98 controls. During a mean follow-up of 5.1 years, 25.7% of patients experienced phenoconversion. Most of the neuropsychological tests could differentiate dementia-first but not parkinsonism-first convertors from non-convertors. The modified posterior subscore of MoCA, by integrating the Alternating Trail Making and Clock Drawing components into original the posterior subscore, which mainly reflects visuospatial function, was the strongest predictor for dementia-first phenoconversion (adjusted HR 5.48, 95% CI 1.67 to 17.98).ConclusionVisuospatial dysfunction, as reflected mainly by the modified posterior subscore of MoCA, is a predictive factor for dementia-first phenoconversion in iRBD, suggesting its potential for being a biomarker for clinical prognostic prediction and potential neuroprotective trials aiming to delay or prevent dementia.

Funder

Health Bureau

Research Grants Council, University Grants Committee

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3