SDCBP promotes pancreatic cancer progression by preventing YAP1 from β-TrCP-mediated proteasomal degradation

Author:

Liu JingORCID,Bai Weiwei,Zhou Tianxing,Xie Yongjie,Yang Bo,Sun Jingyan,Wang Yifei,Li Xueyang,Hou Xupeng,Liu Ziyun,Fu Danqi,Yan Jingrui,Jiang Wenna,Zhao Kaili,Zhou Bodong,Yuan Shuai,Guo Yu,Wang Hongwei,Chang Antao,Gao Song,Shi Lei,Huang Chongbiao,Yang Shengyu,Hao JihuiORCID

Abstract

ObjectivePancreatic ductal adenocarcinoma (PDAC) is a highly lethal tumour with limited treatment options. Here, we identified syndecan binding protein (SDCBP), also known as syntenin1, as a novel targetable factor in promoting PDAC tumour progression. We also explored a therapeutic strategy for suppressing SDCBP expression.DesignWe used samples from patients with PDAC, human organoid models, LSL-KrasG12D/+mice, LSL-Trp53R172H/+ and Pdx1-Cre (KPC) mouse models, and PDX mouse models. Immunostaining, colony formation assay, ethynyl-2-deoxyuridine incorporation assay, real-time cell analysis, cell apoptosis assay, automated cell tracking, invadopodia detection and gelatin degradation assays, coimmunoprecipitation, and pull-down assays were performed in this study.ResultsThe median overall survival and recurrence-free survival rates in the high-SDCBP group were significantly shorter than those in the low-SDCBP group. In vitro and in vivo studies have demonstrated that SDCBP promotes PDAC proliferation and metastasis. Mechanically, SDCBP inhibits CK1δ/ε-mediated YAP-S384/S387 phosphorylation, which further suppresses β-TrCP-mediated YAP1 ubiquitination and proteasome degradation by directly interacting with YAP1. SDCBP interacts with the TAD domain of YAP1, mainly through its PDZ1 domain. Preclinical KPC mouse cohorts demonstrated that zinc pyrithione (ZnPT) suppresses PDAC tumour progression by suppressing SDCBP.ConclusionsSDCBP promotes the proliferation and metastasis of PDAC by preventing YAP1 from β-TrCP-mediated proteasomal degradation. Therefore, ZnPT could be a promising therapeutic strategy to inhibit PDAC progression by suppressing SDCBP.

Funder

National Natural Science Foundation of China

The Science &Technology Development Fund of Tianjin Education Commission for Higher Education

Tianjin Natural Science Fundation

Tianjin Research Innovation Project for Postgraduate Students

Tianjin Prominent Talents, Tianjin Eminent Scholars

Collaboration Program of Beijing, Tianjin and Hebei

Publisher

BMJ

Subject

Gastroenterology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3