Lung volume changes during apnoeas in preterm infants

Author:

Gaertner Vincent DORCID,Waldmann Andreas D,Davis Peter GORCID,Bassler Dirk,Springer LailaORCID,Tingay David GeraldORCID,Rüegger Christoph MartinORCID

Abstract

ObjectiveMechanisms of non-invasive high-frequency oscillatory ventilation (nHFOV) in preterm infants are unclear. We aimed to compare lung volume changes during apnoeas in preterm infants on nHFOV and nasal continuous positive airway pressure (nCPAP).MethodsAnalysis of electrical impedance tomography (EIT) data from a randomised crossover trial comparing nHFOV with nCPAP in preterm infants at 26–34 weeks postmenstrual age. EIT data were screened by two reviewers to identify apnoeas ≥10 s. End-expiratory lung impedance (EELI) and tidal volumes (VT) were calculated before and after apnoeas. Oxygen saturation (SpO2) and heart rate (HR) were extracted for 60 s after apnoeas.ResultsIn 30 preterm infants, 213 apnoeas were identified. During apnoeas, oscillatory volumes were detectable during nHFOV. EELI decreased significantly during apnoeas (∆EELI nCPAP: −8.0 (−11.9 to −4.1) AU/kg, p<0.001; ∆EELI nHFOV: −3.4 (−6.5 to −0.3), p=0.03) but recovered over the first five breaths after apnoeas. Compared with before apnoeas, VTwas increased for the first breath after apnoeas during nCPAP (∆VT: 7.5 (3.1 to 11.2) AU/kg, p=0.001). Falls in SpO2and HR after apnoeas were greater during nCPAP than nHFOV (mean difference (95% CI): SpO2: 3.6% (2.7 to 4.6), p<0.001; HR: 15.9 bpm (13.4 to 18.5), p<0.001).ConclusionApnoeas were characterised by a significant decrease in EELI which was regained over the first breaths after apnoeas, partly mediated by a larger VT. Apnoeas were followed by a considerable drop in SpO2and HR, particularly during nCPAP, leading to longer episodes of hypoxemia during nCPAP. Transmitted oscillations during nHFOV may explain these benefits.Trial registration numberACTRN12616001516471.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Australian Education International, Australian Government

Deutsche Forschungsgemeinschaft

Swiss Society of Neonatology

Victorian Government Operational Infrastructure Support Program

National Health and Medical Research Council

Publisher

BMJ

Subject

Obstetrics and Gynecology,General Medicine,Pediatrics, Perinatology and Child Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deciphering Mechanisms of Respiratory Foetal-to-Neonatal Transition in Very Preterm Infants;American Journal of Respiratory and Critical Care Medicine;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3