Individual participant data validation of the PICNICC prediction model for febrile neutropenia

Author:

Phillips BobORCID,Morgan Jessica Elizabeth,Haeusler Gabrielle M,Riley Richard D

Abstract

BackgroundRisk-stratified approaches to managing cancer therapies and their consequent complications rely on accurate predictions to work effectively. The risk-stratified management of fever with neutropenia is one such very common area of management in paediatric practice. Such rules are frequently produced and promoted without adequate confirmation of their accuracy.MethodsAn individual participant data meta-analytic validation of the ‘Predicting Infectious ComplicatioNs In Children with Cancer’ (PICNICC) prediction model for microbiologically documented infection in paediatric fever with neutropenia was undertaken. Pooled estimates were produced using random-effects meta-analysis of the area under the curve-receiver operating characteristic curve (AUC-ROC), calibration slope and ratios of expected versus observed cases (E/O).ResultsThe PICNICC model was poorly predictive of microbiologically documented infection (MDI) in these validation cohorts. The pooled AUC-ROC was 0.59, 95% CI 0.41 to 0.78, tau2=0, compared with derivation value of 0.72, 95% CI 0.71 to 0.76. There was poor discrimination (pooled slope estimate 0.03, 95% CI −0.19 to 0.26) and calibration in the large (pooled E/O ratio 1.48, 95% CI 0.87 to 2.1). Three different simple recalibration approaches failed to improve performance meaningfully.ConclusionThis meta-analysis shows the PICNICC model should not be used at admission to predict MDI. Further work should focus on validating alternative prediction models. Validation across multiple cohorts from diverse locations is essential before widespread clinical adoption of such rules to avoid overtreating or undertreating children with fever with neutropenia.

Funder

Research Trainees Coordinating Centre

Publisher

BMJ

Subject

Pediatrics, Perinatology, and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3