NETs By-products and Extracellular DNA May Play a Key Role in COVID-19 Pathogenesis: Incidence on Patient Monitoring and Therapy

Author:

Thierry Alain,ROCH Benoit

Abstract

Neutrophils play an important role as the first line of innate immune defense. One function of neutrophils, called neutrophil extracellular traps (NETs), has been discovered recently. NETs are extensive fibrous structures released extracellularly from activated neutrophils in response to infection. They are composed of cytosolic protein assembled on a scaffold of released chromatin. These structures suppress the dissemination of micro-organisms in blood by trapping them mechanically, and by exploiting coagulant function to segregate them within the circulation. In addition, NET components (DNA, histone, and granule proteins) also contribute to the triggering of an inflammatory process. NET function, however, can be regarded as a double-edged sword. On one hand, NET formation is an efficient strategy for neutralizing invading micro-organisms. On the other hand, NET can be harmful to the host, as its exposed by-products that are toxic to endothelial cells and parenchymal tissue. We present here the analogous biological and physiological features of the harmful positive amplification loop between inflammation and tissue damage induced by NETosis dysregulation and Coronavirus Disease-2019 (COVID-19) pathogenesis. Considering the rapid evolution of this disease symptoms and its lethality, we hypothesize that COVID-19 progresses under an amplifier loop, leading to an massive, uncontrolled inflammation process. We also describe the correlations of COVID-19 symptoms and biological features with those consecutive to uncontrolled NET formation causing various sterile or infectious diseases. General clinical conditions, and numerous pathological and biological features, are analogous with NETs deleterious effects. We postulate that Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV2) induces a disproportionate virus-induced NET release, and that this plays a key role in COVID-19 pathogenesis. While neutrophils are the principal starting point for extracellular and circulating DNA release, targeting NETs rather than neutrophils themselves may stand for an effective strategy. This paper offers an in-depth review of NET formation, function and pathogenic dysregulation, as well as of current and future therapies to control NET unbalance. As such, it enables us also to suggest new therapeutic strategies to fight COVID-19. In combination with or independent of the latest tested approaches, we propose that, in the short term, deoxyribonuclease I (DNase-1) treatment should be evaluated; we also advocate a significant increase in research on the development of toll-like receptors (TLR) and C-type Lectin like receptors (CLEC) inhibitors, and on anti-IL26 therapies.

Publisher

MDPI AG

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3