A Review of State-of-the-art and Short-Term Forecasting Models for Solar PV Power Generation

Author:

Tsai Wen-ChangORCID,Tu Chia-Sheng,Hong Chih-MingORCID,Lin Whei-Min

Abstract

Accurately predicting the power of solar power generation can greatly reduce the impact of the randomness and volatility of power generation on the stability of the power grid system, which is beneficial for the balanced operation and optimized dispatch of the power grid system, and reduces operating costs. Solar PV power generation depends on weather conditions, which are prone to large fluctuations under different weather conditions. Its power generation is characterized by randomness, volatility and intermittency. Recently, the demand for further investigation and effective use on the uncertainty of short-term solar PV power generation prediction has been getting increasing attention in many application of renewable energy sources. In order to improve the predictive accuracy of output power of solar PV power generation and develop a precise predictive model, the authors worked predictive algorithms for the output power of a solar PV power generation system. Moreover, since short-term solar PV power forecasting is one of the important aspects for optimizing the operation and control of renewable energy systems and electricity markets, this review focuses on the predictive models of solar PV power generation, which can be verified in the daily planning and operation of a smart grid system. In addition, the predictive methods in the reviewed literature are classified according to the input data source used for accurate predictive models, and the case studies and examples proposed are analyzed in detail. The contributions, advantages and disadvantages of the predictive probabilistic methods are compared. Finally, the future studies of short-term solar PV power forecasting is proposed.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3