Nanofluids for Solar Thermal Collection and Energy Conversion

Author:

Abdullah Hussain Mohammed,Yesudasan SumithORCID,Chacko Sibi

Abstract

This paper investigates the improvement in solar energy collection and conversion using Al2O3-Water nanofluids in a solar flat plate collector (SFPC). The efficiency of a solar flat plate collector using water as the fluid medium is analyzed experimentally and theoretically. For theoretical analysis, a mathematical model in MATLAB is used to simulate and is validated by the experimental results. To enhance the solar energy collection and conversion efficiency of the SFPC, Al2O3-Water nanofluid was selected as the fluid medium. The nanofluid properties like density, specific heat capacity, thermal conductivity and viscosity are analyzed and compared for several models of Al2O3-Water nanofluids and the best model was selected to modify the simulation. Effect of particle diameter in the nanofluid was found to be marginal on the nanofluid properties. The optimum volume concentration of the nanofluid was found to be 4% giving an efficiency increase of 7.78% in the SFPC over the use of water. This reduces the area of the SFPC by 10.5%.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanofluids in solar collectors: a comprehensive review focused on its sedimentation;Clean Technologies and Environmental Policy;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3