Building-Level Wastewater Monitoring for COVID-19 Using Tampon Swabs and RT-LAMP for Rapid SARS-Cov-2 RNA Detection

Author:

Bivins Aaron,Lott Megan,Shaffer Marlee,Wu Zhenyu,North Devin,Lipp Erin,Bibby Kyle

Abstract

Community-level wastewater monitoring for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA has demonstrated useful correlation with both coronavirus disease 2019 (COVID-19) case numbers and clinical testing positivity. Wastewater monitoring on college campuses has demonstrated promising predictive capacity for the presence and absence of COVID-19 cases. However, to date, such monitoring has largely relied upon composite or grab samples and reverse transcription quantitative PCR (RT-qPCR) techniques, which limits the accessibility and scalability of wastewater monitoring. In this study, we piloted a workflow that uses tampons as passive swabs for collection and reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect SARS-CoV-2 RNA in wastewater. Results for the developed workflow were available same day, with a time to result following tampon swab collection of approximately three hours. The RT-LAMP 95% limit of detection (76 gene copies reaction-1) was greater than RT-droplet digital PCR (ddPCR; 3.3 gene copies reaction-1). Nonetheless, during a building-level wastewater monitoring campaign conducted in the midst of weekly clinical testing of all students, the workflow demonstrated a same-day positive predictive value (PPV) of 33% and negative predictive value (NPV) of 80% for incident COVID-19 cases. The NPV is comparable to that reported by wastewater monitoring using RT-qPCR. These observations suggest that even with lower analytical sensitivity the tampon swab and RT-LAMP workflow offers a cost-effective and rapid approach that could be leveraged for scalable same-day building-level wastewater monitoring for COVID-19.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3