Novel Multi Epitope-based Vaccine against Monkeypox Virus: Vaccinomic approach

Author:

Shantier Shaza,Mustafa MujahedORCID,Abdelmoneim AbdelrahmanORCID,Fadl Hiba,Elbager Sahar,Makhawi Abdelrafie

Abstract

Background: While mankind is still dealing with the COVID-19 pandemic, on May 7, 2022, a case of monkeypox virus (MPXV) has been reported to the WHO. Monkeypox is a viral zoonotic disease with characteristics comparable to those seen in smallpox cases in the past. It has been a public health threat, particularly in Africa, but recently have been circulating the world, consequently, may become a global public health threat in a very short period. Thus, the current work was planned and then constructed a multi-epitope vaccine that can evoke an immunological response against MPXV utilizing cell surface-binding protein as a target in order to develop a novel vaccine that is both safe and almost free of side effects. Results: The proposed vaccine composed of 304 amino acids and was shown to be antigenic in Vaxijen server (0. 5311) and nonallergenic in AllerTop server. The 3D structure of the designed vaccine is predicted, refined and validated by various in silico tools to assess the stability of the vaccine. Moreover, solubility of the vaccine construct was found greater than the average solubility provided by protein-Sol server indicating the solubility of the vaccine construct. Moreover, the most promising epitopes bound to MHC I and MHC II alleles were found having good binding affinities with low energies ranging between ₋7.0 - ₋8.1kcal/mol. Conclusion: We conclude from our research that the cell surface-binding protein is one of the primary proteins involved in MPXV pathogenesis. The most promising epitopes were selected using a rigorous procedure and used for vaccine design. As a result, our study will aid in the development of appropriate therapeutics and prompt the development of future vaccines against MPXV, which could serve as an important milestone in the production of an antiviral vaccine against MPXV.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3