Author:
Ojiro Tetsuya,Tachibana Toshiyuki,Honda Hideki,Hamamatsu Hiroshi,Tsuruta Kazuhiro,Hanamoto Tsuyoshi, , ,
Abstract
Many transport units for large production devices now incorporate large-sized gantry type linear motor sliders comprising two parallel linear sliders linked by a joint table. This type of linear motor slider develops a unique mechanical distortion, generating a repulsive force between the two axes that can raise the motor output forces higher than their rated limit. A previous study proposed a method to suppress the repulsive force. However, as feedback gains are set high, force references oscillate and the control system becomes unstable. In past study, yawing vibration suppression methods have been proposed. But, we consider that this vibration is not yawing vibration because the force references include same phase vibration with high gains. Therefore, the modal analysis is performed to analyze this vibration. As a result, it was found that the pitching vibration of the slider was greatly affected. This paper considers this vibration phenomenon, and suppression of the vibration by control method which is similar to impedance control is presented. Hence, it is shown that considering multi-degree of freedom vibration which means yawing vibration and pitching vibration included is important in order to control the large-sized gantry type linear motor sliders.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference24 articles.
1. H. Yu and B. Fahimi, “Industrial servo applications of linear induction motors based on dynamic maximum force control,” 2010 25th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), pp. 1498-1502, 2010.
2. Y. Nakamura, K. Morimoto, and S. Wakui, “Position control of linear slider via feedback error learning,” 2011 3rd Pacific-Asia Conf. on Circuits, Communications and System (PACCS), pp. 1-4, 2011.
3. T. Yamada and K. Fujisaki, “Application of linear induction motor for tension supply and heating to thin sheet steel,” Electrical Engineering in Japan, Vol.168, No.2, pp. 38-47, 2009 (Denki Gakkai Ronbunshi, Vol.127-D, No.7, pp. 707-714, 2007).
4. M. Sogabe, Y. Iwashita, N. Sonoda, and Y. Kakino, “Study on the servo-stability of the tandem driven machine with linear motors,” J. of the Japan Society for Precision Engineering, Vol.73, No.5, pp. 605-610, 2007.
5. F. Terasaki, J. Kobayashi, R. Oguro, and F. Ohkawa, “A positioning control of a serial twin linear slider system with machine stand vibration,” 2006 IEEE Int. Conf. on Industrial Technology, pp. 2925-2930, 2011.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献