Author:
Yokozuka Masashi, ,Matsumoto Osamu
Abstract
This paper presents a path planning method by path energy minimizing that enables mobile robots to move smoothly in the real world with optimizing path shape for shortest distance or minimum curvature. It also enables robots to travel safely toward a destination because pedestrian motion prediction is embedded in path planning. This path planning method is based on problems experienced in a robot competition called Tsukuba Challenge. The problems involved nonsmooth motion arising from finite path patterns in A* algorithm, stuck motion arising from frequently path switching, and near misses arising from nonpredictive planning. Our path planning method minimizes pathshape energy defined as the connection between path points. Minimizing energy provides smooth paths and avoids path switching. We propose a path planning method with prediction of dynamic obstacle motion embedded to avoid near misses. Experimental results showed improvements in solving these problems.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference25 articles.
1. P. E. Hart et al., “A Formal Basis for the Heuristic Determination of Minimum Cost Paths,” IEEE Trans. on Systems Science and Cybernetics, Vol.4, pp. 100-107, 1968.
2. A. Stentz, “Optimal and Efficient Path Planning for Partially-Known Environments,” Proc. of the Int. Conf. on Robotics and Automation, pp. 3310-3317, 1994.
3. S. Koenig et al., “Fast Replanning for Navigation in Unknown Terrain,” Trans. on Robotics, Vol.21, Issue 3, pp. 354-363, 2005.
4. L. E. Kavraki et al., “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Trans. on Robotics and Automation, Vol.12, Issue 4, pp. 566-580, 1996.
5. S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path planning,” Technical Report, Computer Science Department, Iowa State University, 1998.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献