Probabilistic Planning for Predictive Condition Monitoring and Adaptation Within the Self-Optimizing Energy Management of an Autonomous Railway Vehicle

Author:

Klöpper Benjamin, ,Sondermann-Wölke Christoph,Romaus Christoph,

Abstract

Self-optimizing mechatronic systems are a new class of technical systems. On the one hand, new challenges regarding dependability arise from their additional complexity and adaptivity. On the other hand, their abilities enable new concepts and methods to improve the dependability of mechatronic systems. This paper introduces a multi-level dependability concept for selfoptimizing mechatronic systems and shows how probabilistic planning can be used to improve the availability and reliability of systems in the operating phase. The general idea to improve the availability of autonomous systems by applying probabilistic planning methods to avoid energy shortages is exemplified on the example of an innovative railway vehicle.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference30 articles.

1. R. Isermann, “Mechatronic Systems: Fundamentals,” Springer-Verlag, London, 2005.

2. J. Gausemeier, S. Kahl, and S. Pook, “From Mechatronics to Self-Optimizing Systems,” In Self-optimizing Mechatronic Systems: Design the Future, 7th Int. Heinz Nixdorf Symposium, 2008.

3. J. C. Laprie (Ed.), “Dependability: Basic Concepts and Terminology in English, French, German, Italian, and Japanese,” Springer-Verlag, Wien, 1992.

4. B. Klöpper, C. Sondermann-Wölke, C. Romaus, and H. Voecking, “Probabilistic Planning Integrated in a Multi-level Dependability Concept for Mechatronic Systems,” In 2009 IEEE Symposium on Computational Intelligence in Control and Automation, pp. 104-111, 2009.

5. S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach,” Prentice Hall, 3 edition, 2009.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3