Author:
Ogawa Kazunori,Kadowaki Akito,Shimatani Koji,Hasegawa Masaki,Takahashi Keita,Tsuji Toshio,Kurita Yuichi, , , ,
Abstract
As muscle weakness due to aging or fatigue potentially increases the risk of injuries or accidents, support wears may be needed that can play a role in assisting various motions. Recently, research and development of such support wears have gained momentum in order to measure a variety of their supporting effects. While in the research stage, they are designed and evaluated on the premise that they are carefully adjusted to fit the specific wearers’ physiques. However, in actually producing and using such support wears on sites, they pose a problem in that their supporting effects cannot sufficiently be felt because they are difficult to fix, or because they do not fit all body sizes. Therefore, in this study, we have quantitatively evaluated their assisting effects using simulations with a musculoskeletal model with a built-in functional underwear with support parts. In particular, we evaluated whether any differences in arrangement of support parts on the human body, due to their different fixture methods, will have an effect on their assisting effects. We have also developed a support wear, with easy to adjust support parts and fixture positions, and have verified the abovementioned simulation accuracies by myoelectric measurements. This verification found that the proposed simulation method can predict, to some extent, the impacts of any deviations in the support parts’ positions and their assisting effects.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献