Tracing Volcanic Activity Chronology from a Multiparameter Dataset at Shinmoedake Volcano (Kirishima), Japan

Author:

Yamada Taishi,Ueda Hideki,Mori Toshiya,Tanada Toshikazu, ,

Abstract

Routine volcano monitoring increasingly involves multiparameter datasets. Databases that include multi-disciplinary datasets have great potential to contribute to the evaluation of ongoing volcanic eruptions and unrest events. Here, we examine the characteristics of a multiparameter dataset from Shinmoedake volcano (Kirishima) in Japan for the period of 2010–2018 to examine how the chronology of volcanic activity can be traced. Our dataset consists of global navigation satellite system (GNSS), seismic, tilt, infrasound, sulfur dioxide (SO2) column amount, and video records. We focus mainly on the period after 2012, particularly a series of ash emissions in 2017 (hereafter the 2017 eruption), lava effusion, and Vulcanian eruptions in 2018 (hereafter the 2018 eruption). Our dataset shows that the GNSS observations successfully captured the gradual inflation of the volcano edifice, suggesting magma intrusion or pressure buildup in the magma storage region prior to the 2017 and 2018 eruptions. The number of volcanic earthquakes also gradually increased from 2016 toward the eruptions, particularly events occurring beneath Shinmoedake. Tilt data captured a precursor tilt event prior to the 2017 eruption and a magma chamber deflation during the lava effusion of the 2018 eruption. Tilt, seismic, infrasound, SO2 gas column, and video data record signals accompanying periodic degassing during the lava effusion and explosive degassing accompanying the Vulcanian eruptions, which have similar characteristics to those reported for past eruptions at Shinmoedake and other volcanoes. This similarity suggests that multidisciplinary databases will be an important reference for future evaluations of ongoing volcanic activity and unrest.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3