An Optimal Design Methodology for the Trajectory of Hydraulic Excavators Based on Genetic Algorithm

Author:

Yuasa Takamichi, ,Ishikawa Masato,Ogawa Satoshi

Abstract

Hydraulic excavators are one type of construction equipment used in various construction sites worldwide, and their usage and scale are diverse. Generally, the work efficiency of a hydraulic excavator largely depends on human operation skills. If we can comprehend the experienced operation skills and utilize them for manual control assist, semi-automatic or automatic remote control, it would improve its work efficiency and suppress personnel costs, reduce the operator’s workload, and improve his/her safety. In this study, we propose a methodology to design efficient machine trajectories based on mathematical models and numerical optimization, focusing on ground-level excavation as a dominant task. First, we express its excavation trajectory using four parameters and assume the models for the amount of excavated soil and the reaction force based on our previous experiments. Next, we combine these models with a geometrical model for the hydraulic excavating machine. We then assign the amount of soil to a performance index preferably to be maximized and the amount of work to a cost index preferably to be minimized, both in the form of functions of the trajectory parameters, resulting in an optimization problem that trades them off. In particular, we formulate (1) a multi-objective optimization problem maximizing a weighted linear combination of the amount of soil and the amount of work as an objective function, and (2) a single-objective optimization problem maximizing the amount of soil under a given upper bound on the amount of work, so that we can solve these optimization problems using the genetic algorithm (GA). Finally, we conclude this paper by suggesting our notice on design methodology and discussing how we should provide the optimization method as mentioned above to the users who operate hydraulic excavators.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3