Abstract
Allostasis is a physiological principle based on a dynamic regulatory system, contrary to homeostasis, in which the goal is to reach a steady state and recover from deviation from a set point in the internal environment. The concept of allostasis has continued to develop with advances in the field of neuroscience. In this short review, the author presents several new findings in neuroscience and extend the concept of allostasis as mutual regulation between cognitive, somatic, and autonomic systems. In this manner, biological systems adapt to external and internal environments by changing themselves.
Funder
Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology
Japan Science and Technology Agency
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference63 articles.
1. B. McEwen, “The End of Stress As We Know It,” Joseph Henry Press, 2002.
2. J. Schulkin, “Allostasis: a neural behavioral perspective,” Hormones and Behavior, Vol.43, No.1, 2003.
3. J. Schulkin and P. Sterling, “Allostasis: a brain-centered, predictive mode of physiological regulation,” Trends Neurosci., Vol.42, No.10, pp. 740-752, 2019.
4. P. Sterling and J. Eyer, “Allostasis: a new paradigm to explain arousal pathology,” S. Fisher and J. Reason (Eds.), “Handbook of life stress, cognition and health,” pp. 629-649, John Wiley & Sons, 1988.
5. P. Sterling, “Principles of allostasis: optimal design, predictive regulation, pathophysiology and rational therapeutics,” J. Schulkin (Ed.), “Allostasis, Homeostasis, and the Costs of Physiological Adaptation,” Cambridge University Press, 2004.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Inflammation and Behavior Changes in Dogs and Cats;Veterinary Clinics of North America: Small Animal Practice;2024-01