Author:
He Yingmei,Xin Bin,Lu Sai,Wang Qing,Ding Yulong, ,
Abstract
In this study, the dynamic joint scheduling problem for processing machines and transportation robots in a flexible job shop is investigated. The study aims to minimize the order completion time (makespan) of a job shop manufacturing system. Considering breakdowns, order insertion and battery charging maintenance of robots, an event-driven global rescheduling strategy is adopted. A novel memetic algorithm combining genetic algorithm and variable neighborhood search is designed to handle dynamic events and obtain a new scheduling plan. Finally, numerical experiments are conducted to test the effect of the improved operators. For successive multiple rescheduling, the effectiveness of the proposed algorithm is verified by comparing it with three other algorithms under dynamic events, and through statistical analysis, the results verify the effectiveness of the proposed algorithm.
Funder
National Key R&D Program of China
National Outstanding Youth Talents Support Program
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献