Multiscale Image Aggregation for Dental Radiograph Segmentation

Author:

Tangel Martin Leonard, ,Fatichah Chastine,Widyanto Muhammad Rahmat,Dong Fangyan,Hirota Kaoru,

Abstract

Multiscale Image Aggregation (MIA) is proposed for dental radiograph segmentation, where a grayscale image segmentation method using neighborhood pixels evaluation and fuzzy inference is applied to its original image and three scaled-down images. The average segmentation result by employing the proposed method is more accurate than that obtained by employing the Otsu method, and it is robust against inconsistent contrast, uneven exposure, and pixel’s noise of the radiograph. An experiment is performed using 122 dental radiographs covering periapical and bitewing radiographs from the Faculty of Dentistry, University of Indonesia, which represent the real radiographs used in dentistry and forensics, and 77.7% average segmentation accuracy is obtained by comparing each automatic segmentation result with the corresponding manual segmentation result as a reference. This proposal is a crucial part in our automatic dental-based identification system that is under development. Since manual dental-based identification is widely used for personal identification, an accurate automatic dental-based identification system is helpful in assisting forensic experts in identifying a large number of victims. Thus it makes identification of victims of disasters such as the Indian Ocean Tsunami and Tohoku Earthquake manageable.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Texture-based computations for processing volumetric dental image;Advances in Computers;2024

2. A Survey of Dental Caries Segmentation and Detection Techniques;The Scientific World Journal;2022-04-11

3. Learning compact and discriminative hybrid neural network for dental caries classification;Microprocessors and Microsystems;2021-04

4. Dental Numbering for Periapical Radiograph Based on Multiple Fuzzy Attribute Approach;Journal of Advanced Computational Intelligence and Intelligent Informatics;2014-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3