Overcoming Data Limitations in Thai Herb Classification with Data Augmentation and Transfer Learning

Author:

Pornudomthap Sittiphong1ORCID,Rattanatamma Ronnagorn1ORCID,Sangkloy Patsorn1ORCID

Affiliation:

1. Faculty of Science and Technology, Phranakhon Rajabhat University, 9 Changwattana Road, Bangkhen, Bangkok 10220, Thailand

Abstract

Despite the medicinal significance of traditional Thai herbs, their accurate identification on digital platforms is a challenge due to the vast diversity among species and the limited scope of existing digital databases. In response, this paper introduces the Thai traditional herb classifier that uniquely combines transfer learning, innovative data augmentation strategies, and the inclusion of noisy data to tackle this issue. Our novel contributions encompass the creation of a curated dataset spanning 20 distinct Thai herb categories, a robust deep learning architecture that intricately combines transfer learning with tailored data augmentation techniques, and the development of an Android application tailored for real-world herb recognition scenarios. Preliminary results of our method indicate its potential to revolutionize the way Thai herbs are digitally identified, holding promise for advancements in natural medicine and computer-assisted herb recognition.

Funder

Phranakhon Rajabhat University

Publisher

Fuji Technology Press Ltd.

Reference26 articles.

1. J. Ho, A. Jain, and P. Abbeel, “Diffusion probabilistic models,” Advances in Neural Information Processing Systems, Vol.33, pp. 6840-6851, 2020.

2. C. Pornpanomchai, S. Rimdusit, P. Tanasap, and C. Chaiyod, “Thai herb leaf image recognition system (THLIRS),” Agriculture and Natural Resources, Vol.45, No.3, pp. 551-562, 2011.

3. L. Mookdarsanit and P. Mookdarsanit, “Thai Herb Identification with Medicinal Properties Using Convolutional Neural Network,” Suan Sunandha Science and Technology J., Vol.6, No.2, pp. 34-40, 2019.

4. A. Visavakitcharoen, S. Ratanasanya, and J. Polvichai, “Improving Thai Herb Image Classification Using Convolutional Neural Networks with Boost Up Features,” Proc. of 2019 34th Int. Technical Conf. on Circuits/Systems, Computers and Communications (ITC-CSCC), 2019. https://doi.org/10.1109/ITC-CSCC.2019.8793352

5. S. Temsiririrkkul, P. Siritanawan, and R. Temsiririrkkul, “Which one is Kaphrao? Identify Thai herbs with similar leaf structure using transfer learning of deep convolutional neural networks,” Proc. of TENCON 2021-2021 IEEE Region 10 Conf. (TENCON), pp. 738-743, 2021. https://doi.org/10.1109/TENCON54134.2021.9707324

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3