Author:
Chi Jinxin, ,Wu Hao,Tian Guohui
Abstract
Service robots gain both geometric and semantic information about the environment with the help of semantic mapping, providing more intelligent services. However, a majority of studies for semantic mapping thus far require priori knowledge 3D object models or maps with a few object categories that neglect separate individual objects. In view of these problems, an object-oriented 3D semantic mapping method is proposed by combining state-of-the-art deep-learning-based instance segmentation and a visual simultaneous localization and mapping (SLAM) algorithm, which helps robots not only gain navigation-oriented geometric information about the surrounding environment, but also obtain individually-oriented attribute and location information about the objects. Meanwhile, an object recognition and target association algorithm applied to continuous image frames is proposed by combining visual SLAM, which uses visual consistency between image frames to promote the result of object matching and recognition over continuous image frames, and improve the object recognition accuracy. Finally, a 3D semantic mapping system is implemented based on Mask R-CNN and ORB-SLAM2 frameworks. A simulation experiment is carried out on the ICL-NUIM dataset and the experimental results show that the system can generally recognize all the types of objects in the scene and generate fine point cloud models of these objects, which verifies the effectiveness of our algorithm.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference25 articles.
1. K. He, G. Gkioxari, and P. Dollär, “Mask R-CNN,” IEEE Int. Conf. Computer Vision (ICCV 2017), pp. 2980-2988, 2017.
2. R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras,” IEEE Trans. on Robotics, Vol.33, No.5, pp. 1255-1262, 2017.
3. K. Tanaka, M. Ando, and Y. Inagaki, “Bag-of-Bounding-Boxes: An Unsupervised Approach for Object-Level View Image Retrieval,” J. Adv. Comput. Intell. Intell. Inform., Vol.18, No.5, pp. 784-791, 2014.
4. J. Woo and N. Kubota, “Recognition of indoor environment by robot partner using conversation,” J. Adv. Comput. Intell. Intell. Inform., Vol.17, No.5, pp. 753-760, 2013.
5. T. Saitoh and Y. Kuroda, “Self-Supervised Mapping for Road Shape Estimation Using Laser Remission in Urban Environments,” J. Robot. Mechatron., Vol.22, No.6, p. 726, 2010.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. 3D Object Detection Using Semantic Maps;2024 5th International Conference for Emerging Technology (INCET);2024-05-24
2. VEM-SLAM - Virtual Environment Modelling through SLAM;2020 22nd Symposium on Virtual and Augmented Reality (SVR);2020-11
3. R-KG: A Novel Method for Implementing a Robot Intelligent Service;AI;2020-03-02