Machining Process for a Thin-Walled Workpiece Using On-Machine Measurement of the Workpiece Compliance

Author:

Umezu Takuma, ,Kono Daisuke

Abstract

Demand for highly productive machining of thin-walled workpieces has been growing in the aerospace industry. Workpiece vibration is a critical issue that could limit the productivity of such machining processes. This study proposes a machining process for thin-walled workpieces that aims to reduce the workpiece vibration during the machining process. The workpiece compliance is measured using an on-machine measurement system to obtain the cutting conditions and utilize the same for suppressing the vibration. The on-machine measurement system consists of a shaker with a force sensor attached on the machine tool spindle, and an excitation control system which is incorporated within the machine tool’s numerical control (NC). A separate sensor to obtain the workpiece displacement is not required for the estimation of the displacement. The system is also capable of automatic measurement at various measurement points because the NC controls the positioning and the preloading of the shaker. The amplitude of the workpiece vibration is simulated using the measured compliance to obtain the cutting conditions for suppressing the vibration. An end milling experiment was conducted to verify the validity of the proposed process. The simulations with the compliance measurement using the developed system were compared to the results of a conventional impact test. The comparison showed that the spindle rotation speed for suppressing the vibration could be successfully determined; but, the axial depth of cut was difficult to be determined because the simulated vibration amplitude was larger than that found in the experimental result. However, this can be achieved if the amplitude is calibrated by one machining trial.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3