Interference Free Tool Path Generation in Multi-Axis Milling Machine for Orthopedic Surgery

Author:

Nakano Taiga, ,Sugita Naohiko,Kato Takeharu,Fujiwara Kazuo,Abe Nobuhiro,Ozaki Toshifumi,Suzuki Masahiko,Mitsuishi Mamoru, , ,

Abstract

Tool interference causes serious damage to surrounding soft tissue in minimally invasive orthopedic surgery with a milling robot. The objective of this study is to avoid the collision of cutting tool with complicated shapes, and a novel approach of interference-free toolpath generation in a short intraoperative time is proposed. In order to resolve this issue, we propose the following two methods: intraoperative modeling of soft tissues as an interference area and interference-free toolpath generation based on the model. A model is constructed to represent the opening area and the internal tissues by using a 3-dimensional optical position sensor to measure them. Based on the constructed model, interference-free toolpath is immediately determined by the preliminary definition of evacuating direction. The effectiveness of the proposed method is evaluated with artificial models on the system that the authors have developed so far. A tool contact force against the model was measured by a force sensor mounted on the cutting tool. The result revealed that the tool interference was greatly reduced by implementing the proposed method.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3