Digital Twin of Experience for Human–Robot Collaboration Through Virtual Reality
-
Published:2023-05-05
Issue:3
Volume:17
Page:284-291
-
ISSN:1883-8022
-
Container-title:International Journal of Automation Technology
-
language:en
-
Short-container-title:IJAT
Affiliation:
1. National Institute of Informatics (NII), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan 2. The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
Abstract
The keyword “human digital twin” has received considerable attention in recent years, and information technology has been developed in healthcare and sports training systems to guide human behavior to a better state. In contrast, from optimizing the production and maintenance processes of industrial products, which is the origin of the term “digital twin,” intelligent robot systems can be interpreted as a mainstream of digital twin. In other words, assistive robots that support humans in their daily lives and improve their life behavior require the integration of human digital twin and conventional object digital twin. However, integrating these two digital twins is not easy from the viewpoint of system integration. In addition, it is necessary to encourage humans to change their behavior to provide users with subjective and immersive experiences rather than simply displaying numerical information. This study reviews the current status and limitations of these digital twin technologies and proposes the concept of a virtual reality (VR) digital twin that integrates digital twins and VR toward assistive robotic systems. This will expand the experience of both humans and robots and open the way to the realization of robots that can better support our daily lives.
Funder
Japan Science and Technology Agency Japan Society for the Promotion of Science
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference35 articles.
1. M. Grieves and J. Vickers, “Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems,” F.-J. Kahlen, S. Flumerfelt, and A. Alves (Eds.), “Transdisciplinary perspectives on complex systems: New findings and approaches,” pp. 85-113, Springer, 2017. 2. W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital twin in manufacturing: A categorical literature review and classification,” IFAC-PapersOnLine, Vol.51, No.11, pp. 1016-1022, 2018. 3. N. Bagaria, F. Laamarti, H. F. Badawi, A. Albraikan, R. A. M. Velazquez, and A. E. Saddik, “Health 4.0: Digital twins for health and well-being,” A. E. Saddik, M. S. Hossain, and B. Kantarci (Eds.), “Connected Health in Smart Cities,” pp. 143-152, Springer, 2020. 4. M. Mochimaru, “Digital human models for human-centered design,” J. Robot. Mechatron., Vol.29, No.5, pp. 783-789, 2017. 5. T. Maruyama, T. Ueshiba, M. Tada, H. Toda, Y. Endo, Y. Domae, Y. Nakabo, T. Mori, and K. Suita, “Digital twin-driven human robot collaboration using a digital human,” Sensors, Vol.21, No.24, 8266, 2021.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|