Promotion of Knowledge and Technology Transfer Towards Innovative Manufacturing Process: Case Study of New Hybrid Coating Process

Author:

Shinoda Kentaro,Noda Hiroaki,Ohtomi Koichi,Yamada Takayuki,Akedo Jun, , ,

Abstract

A new, multi-dimensional, additive manufacturing process for fine ceramics was proposed and developed as part of a national project in Japan. The process consists of three-dimensional printing and two-dimensional coating of fine ceramics. A new coating process, hybrid aerosol deposition (HAD), was proposed as the ceramic coating process. The HAD process is a hybrid of aerosol deposition (AD) and plasma spray. Such new technologies, however, usually take a long time to move from first discovery to use in producing a commercial product. For example, a past study showed that it took nearly 15 years from the invention of the AD process to the time it became a technology used at an industrial company. Therefore, it is very important to consider how to accelerate the learning and technological transfer of a new process to industry in addition to how to develop new processes once they emerge. In this study, a new scheme, a coating hub, is proposed to promote the transfer of the HAD process to industrial adoption. In the coating hub, a collaboration scheme for companies to get interest of the technology, even in the early stages of technological development, is considered. Here, needs-seeds matching, reliable relationships, intellectual property, and the generalization of technology are considered. Another important scheme of the coating hub is to try to couple design with manufacturing. Here, product design tools for agile production are provided. In order to attract and evaluate consumers for targeted products, a Kansei delight design based on the Kano model is introduced. A delight map viewer is provided to visualize potential consumers’ delight factors. Detailed planning from the early trial stage is introduced with the viewer. A topology optimization tool is also provided in the coating hub as a design tool. In order to validate this coating hub concept, a ceramic frying pan is designed as a case study. The delight map viewer proves effective for those who are not design professionals to consider the attractiveness of products based on user evaluation. The coupling of the topology optimization tool is also useful for the multidimensional additive manufacturing of ceramics proposed in this study. This case study implies that even a small manufacturer could design a new product by utilizing the coating hub concept. It would give many new opportunities not only to big manufactures interested in high-end business-to-business components but also to supporting industries and even to individuals to utilize new emerging coating technologies.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference26 articles.

1. K. Tomita, “Global Trends and Strategies of Ceramics Coating Market,” J. of the Japan Thermal Spray Society, Vol.54, pp. 152-156, 2017 (in Japanese).

2. J. Akedo and M. Kiyohara, “Room Temperature Coating (Ad Method) and Application Possibility to 3D Molding,” J. Smart Process., Vol.3, pp. 158-166, 2014.

3. J. Akedo, S. Nakano, J.-H. Park, S. Baba, and K. Ashida, “The Aerosol Deposition Method,” Synthesiology, Vol.1, pp. 121-130, 2008.

4. M. Kiyohara, H. Hatono, T. Ito, and Y. Nitta, “Development of Low Particle Parts in Plasma Resistance Test,” Ceramics Japan (Bulletin of the Ceramic Society of Japan), Vol.50, pp. 490-491, 2015 (in Japanese).

5. J. Akedo, “The Ad Method: An Innovative Coating Technology That Defies Conventional Wisdom,” AIST Stories: From AIST to the Innovative World, Vol.2, pp. 2-7, 2014.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3