Sub-Nanometer Resolution Positioning Device Driven by New Type of Linear Motor with Linear Ball Guideways – Considering Time Lag of Electric Control System –

Author:

Tanaka Toshiharu, ,Otsuka Jiro,Masuda Ikuro,Aoyama Yasuaki,Inagaki Asuka, ,

Abstract

We have developed an ultra-precision positioning device that has the following characteristics: 1) The 210 mm strokes stage is driven by a new type of linear motor called “Tunnel Actuator (TA).” 2) The stage has very rigid structure so as not to cause vibration and to achieve high resolution for its feed-back system. 3) The stage is supported by linear ball guideways that have nonlinear spring behavior in the small stroke range. 4) Much attention has been paid to the time lag of the electric control system in the PID control using a linear encoder of 0.034 nm resolution for the feed-back system. The electric control system compensates for the disturbance of induced electromotive voltage that is generated in proportion to the stage velocity. We have studied how the equivalent time constant T of the control system affects the stage displacement deviation Δx when the command of stage displacement xr is kept at zero. The following results have been obtained: 1)With a decrease in time constant T of the current control system, the change in the motor current Io becomes smaller, and, at the same time, the change in stage deviation Δx becomes smaller. 2) At the smallest time constant T of the current system, a displacement resolution of 0.2 nm has been obtained under the nonlinear spring behavior of linear ball guideways. 3) There is a possibility of obtaining a displacement resolution of less than 0.1 nm with a further decrease in T.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference22 articles.

1. T. Oiwa and M. Katsuki, “Survey of Questionnaire on Ultra-Precision Positioning,” J. of The Japan Society for Precision Engineering, Vol.74, No.10, p. 1027, 2008. (in Japanese)

2. S. Futami and A. Furutani, “Nanometer Positioning Using AC Linear Motor and Rolling Guide (1st Report),” J. of The Japan Society for Precision Engineering, Vol.57, No.3, p. 556, 1991. (in Japanese)

3. S. Makinouchi, “History of Semiconductor Lithography Technologies,” Proc. of Regular Meeting of Technical Committee of Ultra-Precision Positioning, 2007-1, p. 22, 2007. (in Japanese)

4. J. Otsuka, S. Ichikawa, T. Masuda, and K. Suzuki, “Development of a Small Ultraprecision Positioning Device with 5nm Resolution,” Measurement Science and Technology, Vol.16, p. 2186, 2005.

5. J. Otsuka, S. Ichikawa, and T. Masuda, “Small-sized Ultra-Precision Positioning Device with 1nm Resolution by New Drive System Using Ball Screw,” Proc. of 2006 JSPE Autumn Meeting, L09, p. 857, 2006. (in Japanese)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3