A MOEMS Accelerometer Based on Diffraction Grating with Improved Mechanical Structure

Author:

Lu Qianbo, ,Lian Wenxiu,Lou Shuqi,Wang Chen,Bai Jian,Yang Guoguang

Abstract

In this study, an improved MOEMS (micro-optical electronic mechanical system) accelerometer based on integrated grating with phase modulation is proposed. This device is composed of a laser diode, an optoelectronic processing circuit, a sensing chip (consisting of a piezoelectric translator), an integrated grating as a reflective mirror on a transparent substrate, and a mechanical part of a bulk silicon proof mass suspended by four cantilevers whose upper surface acted as another mirror. This device generates a series of interference fringes by two diffracted beams when illuminated with a coherent light source, whose intensities are modulated by the relative distance between the grating and the proof mass. The intensities of the interference fringes varied with alterations in the distance caused by external accelerations that are proportional to the acceleration. The magnitude of acceleration can be calculated by using a differential circuit detecting the distance. The modified structure introduced in this paper obtains high sensitivity and reduces cross-sensitivity between different sensitive axes. The experimental results before the simulation and theory analysis demonstrate that this modified MOEMS accelerometer has a good performance with higher static acceleration sensitivity of 3 x 310V/g and very low crosstalk.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3