Lr34-Mediated Leaf Rust Resistance in Wheat: Transcript Profiling Reveals a High Energetic Demand Supported by Transient Recruitment of Multiple Metabolic Pathways

Author:

Bolton Melvin D.,Kolmer James A.,Xu Wayne W.,Garvin David F.

Abstract

The wheat gene Lr34 confers partial resistance to all races of Puccinia triticina, the causal agent of wheat leaf rust. However, the biological basis for the exceptional durability of Lr34 is unclear. We used the Affymetrix GeneChip Wheat Genome Array to compare transcriptional changes of near-isogenic lines of Thatcher wheat in a compatible interaction, an incompatible interaction conferred by the resistance gene Lr1, and the race-nonspecific response conditioned by Lr34 3 and 7 days postinoculation (dpi) with P. triticina. No differentially expressed genes were detected in Lr1 plants at either timepoint whereas, in the compatible Thatcher interaction, differentially expressed genes were detected only at 7 dpi. In contrast, differentially expressed genes were identified at both timepoints in P. triticina-inoculated Lr34 plants. At 3 dpi, upregulated genes associated with Lr34-mediated resistance encoded various defense and stress-related proteins, secondary metabolism enzymes, and transcriptional regulation and cellular-signaling proteins. Further, coordinated upregulation of key genes in several metabolic pathways that can contribute to increased carbon flux through the tricarboxylic cycle was detected. This indicates that Lr34-mediated resistance imposes a high energetic demand that leads to the induction of multiple metabolic responses to support cellular energy requirements. These metabolic responses were not sustained through 7 dpi, and may explain why Lr34 fails to inhibit the pathogen fully but does increase the latent period.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3