Affiliation:
1. State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
Abstract
In 2017, a new race (TSA-6) of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici, virulent to resistance gene Yr5, was detected in China. However, whether Chinese wheat cultivars are resistant to the new race was unknown. In this study, two isolates (TSA-6 and TSA-9) with virulence to Yr5 were tested on other wheat Yr gene lines for their avirulence and virulence patterns and used, together with prevalent races CYR32 and CYR34 without the Yr5 virulence, to evaluate 165 major Chinese wheat cultivars for their reactions. Isolates TSA-6 and TSA-9 had similar but different virulence spectra and therefore should be considered two different races. Their avirulence and virulence patterns were remarkably different from that of CYR34 but quite similar to that of CYR32. Of the 165 wheat cultivars, 21 had all-stage resistance to TSA-6, 34 to TSA-9, and 20 to both races. Adult plant resistance (APR) was detected in 35 cultivars to TSA-6 and 27 to TSA-9, but only three cultivars showed APR to both new races. Slow rusting resistance was observed in 24 cultivars to TSA-6 and 33 to TSA-9. Analysis of variance of disease index indicated a significant difference between cultivars but not between the four races. Based on the molecular marker data, a low percentage of wheat cultivars carried Yr5, Yr7, Yr10, Yr15, Yr26, or YrSP. Because TSA-6 and TSA-9 can be a serious threat to wheat production in China, continual monitoring of TSA-6, TSA-9, and other races is needed.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Natural Science Basic Research Plan in Shaanxi Province of China
Fundamental Research Funds for the Central Universities
National “111 Plan”
Subject
Plant Science,Agronomy and Crop Science