Comparing RT-PCR of Individual Samples with High-Throughput Sequencing of Pooled Plant Samples for Field-Level Surveillance of Viruses in Blackberry and Wild Rubus

Author:

Dantes Wanita1ORCID,Boatwright Lucas2,Cieniewicz Elizabeth J.1ORCID

Affiliation:

1. Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634

2. Corteva Agriscience, Indianapolis, IN 46268

Abstract

Blackberry production is increasing in the Southeastern United States with the availability of new cultivars. In addition to high production costs, growers are challenged by virus diseases. Blackberry yellow vein disease (BYVD) significantly limits blackberry production. BYVD is associated with the crinivirus blackberry yellow vein–associated virus in mixed infections with other viruses. The specific disease etiology and ecological factors underlying BYVD are not well understood and rely on the effective diagnosis of several viruses involved in the complex. In 2021, we collected samples from blackberry plants showing BYVD symptoms, asymptomatic blackberry plants, and wild Rosaceae spp. from nine farms across South Carolina, for a total of 372 individual plant samples. RNA from individual samples was isolated and pooled into sample groups (i.e., symptomatic, asymptomatic, and wild) from each farm for a total of 24 pooled samples. We sequenced the pooled RNA using Illumina and analyzed sequence profiles using the Virtool bioinformatics application. We also tested each plant for six viruses by reverse transcriptase PCR or reverse transcriptase quantitative PCR and compared plant (PCR)-level and field (high-throughput sequencing [HTS])-level data. Virtool detected 17 known viruses in the pooled samples, including 11 blackberry viruses. PCR testing was mostly consistent with HTS, with some notable disagreements for specific viruses. Our study demonstrates that HTS could be used as an efficient tool to detect viruses in bulked samples in blackberry fields, although limitations to using HTS for field-level surveillance are also discussed here.

Publisher

Scientific Societies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3