Ascospore Inoculum Density and Characterization of Components of Partial Resistance to Sclerotinia sclerotiorum in Soybean

Author:

Huzar-Novakowiski Jaqueline1,Dorrance Anne E.1

Affiliation:

1. Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster 44691

Abstract

Germplasm screening programs have primarily relied on inoculation with mycelia to determine the resistance reaction of soybean genotypes to Sclerotinia sclerotiorum. However, under field conditions, ascospores are the primary source of inoculum. Therefore, the objective of this study was to determine which components most accurately differentiate the resistance reaction of soybean genotypes inoculated with ascospores of S. sclerotiorum. Ascospores were produced in the laboratory and all of the experiments were carried out under controlled conditions with inoculations at flowering stage. Initially, inoculum densities of 1 × 104, 1 × 105 and 1 × 106 ascospores ml−1 were compared on six soybean genotypes with known resistance reactions. Disease symptoms developed on all genotypes and at all inoculum densities. The highest ascospore concentration increased infection efficiency but it was not correlated with an increase in lesion length. Components of resistance were then measured on a set of 17 cultivars with known resistance reactions at 1 × 105 ascospores ml−1. Resistance reactions could be differentiated based on the level of infection efficiency and lesion length on the main stem. Although inoculation with ascospores presents some limitations such as the time required for inoculum production as well as the time and space required for plant growth, it has the potential to be used to complement other methods for the characterization of resistance of soybean genotypes.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3