Quantitative Trait Loci Analysis and Marker Development for Fruit Rot Resistance in Cranberry Shows Potential Genetic Association with Epicuticular Wax

Author:

Kawash Joseph1,Erndwein Lindsay1,Johnson-Cicalese Jennifer2,Knowles Sara2,Vorsa Nicholi3,Polashock James1ORCID

Affiliation:

1. U.S. Department of Agriculture-Agricultural Research Service, Genetic Improvement of Fruits and Vegetables Laboratory, Chatsworth, NJ 08019

2. Rutgers University, P.E. Marucci Center for Blueberry and Cranberry Research and Extension, Chatsworth, NJ 08019

3. Professor Emeritus, Rutgers University, P.E. Marucci Center for Blueberry and Cranberry Research and Extension, Chatsworth, NJ 08019

Abstract

Fruit rot is a fungal disease complex that threatens cranberry yields in North American growing operations. Management of fruit rot is especially difficult because of the diversity of the infecting fungal species, and although infections take place early in the season, the pathogens usually remain latent in the ovary until the fruit ripen. Control methods heavily rely on fungicide applications, a practice that may be limited in viability long term. Breeding for fruit rot resistance (FRR) is essential for sustainable production. It is likely that field resistance is multifaceted and involves a myriad of traits that fortify cranberry plants against the biotic and abiotic stresses contributing to fruit rot. In this study, we identified quantitative trait loci (QTL) for FRR in a segregating population. Interestingly, a QTL associated with resistance was found to overlap with one associated with fruit epicuticular wax (ECW). A single-nucleotide polymorphism genotyping assay successfully identified accessions that exhibit the desired phenotypes (i.e., less rot and more ECW), thus making it a useful tool for marker-assisted selection. Candidate genes that may contribute to FRR and ECW were also identified. This work will expedite breeding for improved cranberry fruit quality.

Funder

Specialty Crop Research Initiative-National Institute of Food and Agriculture

New Jersey Agricultural Experiment Station

Cranberry Institute

New Jersey Blueberry and Cranberry Research Council

Publisher

Scientific Societies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3