The Influence of Copper Homeostasis Genes copA and copB on Xylella fastidiosa Virulence Is Affected by Sap Copper Concentration

Author:

Ge Qing1,Cobine Paul A.2,De La Fuente Leonardo1ORCID

Affiliation:

1. Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849

2. Department of Biological Sciences, Auburn University, Auburn, AL 36849

Abstract

Xylella fastidiosa is a xylem-limited plant pathogenic bacterium that causes diseases worldwide in crops such as grape, citrus, and olive. Although copper (Cu)-containing compounds are not used for management of X. fastidiosa-caused diseases, they are widely used in X. fastidiosa hosts in vineyards and orchards. The accumulation of Cu in soils and, therefore, plant saps, could be a challenge for X. fastidiosa survival. Here, the molecular basis of Cu homeostasis was studied in relation to virulence. Although homologous Cu-related genes copA (X. fastidiosa loci PD0100) and copB (PD0101) have been characterized in other bacteria, their functions differ among bacterial species. In vitro, both copA and copB mutants were more sensitive to Cu than the wild-type (WT) strain. Interestingly, the copA mutant was more sensitive to Cu shock, while the copB mutant was more sensitive to chronic Cu treatments. In tobacco greenhouse experiments with normal watering, both mutants reduced virulence compared with WT. But when Cu was added as a drench treatment, both copA and copB mutants had increased disease severity approximately 20 and 50% compared with mutants without Cu added, respectively, which were significantly higher than the approximately 5% observed for WT under the same conditions. These results indicate that the pathogen’s Cu homeostasis affects virulence and is influenced by Cu concentration in the environment. Understanding Cu homeostasis in X. fastidiosa will help discern the outcome of Cu treatments and the adaptation of this pathogen to the xylem of plants that have been exposed to high Cu concentrations because of agricultural practices.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3